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+ Department of Engineering Science, Division of Applied Mathematics and  Mechanics,  
University of Patras, Patras 261 10, Greece 
-i Department of Physics, National Technical University, Zografou Campus,  \ t hem 15773, 
Greece 

Received 28 July 1989 

Abstract. We present a theory which explains the mechanism of the ball bearing motor.  
The motor is the result of the rotating of a ball bearing when a current is passed through 
it. The applied torque is calculated following a perturbative description of the electromag- 
netic structure of the balls. The main effects result from the interaction of the magnetic 
field of the central axis with the induced currents and  magnetic fields developed within 
the balls. 

The various current densities and  fields are  determined by solving exactiy the corre- 
sponding Poisson equations,  which result from the Maxwell equations.  Our predicted 
Lalues for the total power, the efficiency a n d  the various required constants are  in excellent 
agreement with the experimental results. 

1. Introduction 

A current passing through a pair of ball bearings generates a torque of electromagnetic 
origin which results to the rotation of the bearings. A cross section of the ball bearing 
system is shown in figure 1. At sufficiently large currents the system of bearings acts 
as a motor although the torque seems to be rather small. The behaviour of this motor, 

Figure 1. The ball bearing motor ( B B ) :  1 rotating shaft, 2 base o f  the B B  solidly mounted 
on the laboratory, 3 constant current source,  4 current meter, 5 digital voltometer, 6 spherical 
ball, 7 bearing. 
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described for first time in a brief note by Milroy (1967), was studied extensively by 
Moyssides et a1 1989 during an experiment using constant current values in the range 
from 43.5-70.15 A. 

For the explanation of this phenomenon, various schemes have been proposed by 
Gruenberg (1978) and Weenink (1981) unsuccessfully. Gruenberg calculated the torque 
inside the rotating ball with velocity U. He considered the interaction of the primary 
current of density Jo and its magnetic field Bo with the first-order induced current J ,  , 
produced by the force - e ( u  x Bo) on each electron e, and its associated magnetic field 
B ,  (figure 2 ) .  

t' 

Figure 2. Current and fields of a non-rotating ball: 
n, the angular velocity; J o ,  primary current density; 
Bo, the magnetic field of the current Jo; B., , magnetic 
field generated by the current i of the central axis; 
R ,  radius of the ball. bearing 

However, he calculated a non-zero torque, which was found by Weenink to be 
wrong due to algebraic errors. Weenink, following the same analysis and taking into 
account the interactions of the previous currents and fields with the second-order 
induced current, produced by the force -e( v x B , )  and its associated magnetic field, 
found a zero torque for the rotating sphere. 

From the above schemes, where the current of the central axis and the associated 
effects have been ignored, we see that the interactions of the lower-order generated 
currents and associated magnetic fields inside the spherical balls cannot create a torque. 
This is due to the structure of the various electromagnetic fields within the sphere, 
independent of the rotational velocity. On the other hand, we estimated that terms of 
higher order n k 2 are proportional to ( U /  c)"  where c is the velocity of light. Hence, 
both of the non-zero contributions to the torque would be of negligible magnitude. 

For the understanding of the electromagnetic effects which result in the rotation 
of the balls and the action of the system of bearings as a motor, we develop the 
following theory, which takes into account the current of the central axis and the 
associated effects, and clearly explains the observed behaviour in excellent agreement 
with experiment. 

Let us consider the ball bearing system of figure 2 with the associated coordinate 
system. A ball is set rotating about the x axis with angular velocity R, clockwise (cw) 
or counterclockwise (ccw) by a push. The motor is not self-starting except when the 



The ball bearing motor and related Maxwell equations 3185 

balls have a residual magnetisation from a previous run. The velocity of every point 
of the ball defined by the vector r is given by U = f l i  x r. 

A rotating ball is subjected to a torque resulted from the excited J x B forces, 
caused by the interactions of the internal primary and induced currents and magnetic 
fields with those generated by the current of the central axis of the motor, in the vicinity 
of and inside the ball. A non-rotating ball is subjected to the primary current J 0 ,  its 
magnetic field B,, and to the magnetic field B ,  generated by the uniform current i of 
the central axis. When the ball is rotating, the charges are also subjected, to first order, 
to the induced current density J ,  = a( E ,  + U x B,,), its magnetic field B ,  and the current 
J2 = a( E2 + U x E , )  with its associated magnetic field B 2 .  The electric fields E ,  and E2 
are produced from the redistribution of the charges within the ball, while CT represents 
the conductivity of the metallic ball. The aforementioned induced currents and  fields 
represent the result of a perturbative description of the complicated electromagnetic 
structure within a ball, where only terms of order v / c  are retained, while higher-order 
relativistic terms are neglected. 

2. Calculation of currents and magnetic fields 

We consider a single ball of radius R where the current is assumed to enter and leave 
the ball over small spherical caps defined by a half angle a # 0. This assumption has 
been correctly introduced by Gruenberg because for a = 0 the current density is infinite 
and the magnetic field tends to infinity in the neighbourhood of the poles ( 0  = 0, T ) .  

In this case, it can be easily shown that the series representations of various quantities 
like the torque and the ohmic power loss diverge as a + 0. If I denotes the current 
which enters and leaves a ball, the total motor current is i = N , I  where N ,  is the 
number of balls per bearing. For a constant angular velocity the total currents and 
fields are stationary and satisfy the static Maxwell equations 

V X E = O  V . E = p / e , ,  (1) 
V x B = p J  V - B = O  ( 2 )  

where p is the charge, E ( J  is the permittivity constant and  p is the magnetic permeability. 
The total current satisfies the continuity equation 

V * J = O  (3) 

J = v ( E +  u x  B ) .  (4) 

while for moving bodies, the current density is given by Ohm’s law 

The approximated total fields and currents generated within a ball are written 

where the terms E,,, B,] ,  J,, and B, exist even when the ball is not rotating. The terms 
E , ,  B ,  and J ,  represent the perturbations introduced, to first order, by the action of 
the force - e ( u  x Bo).  The terms E2 and J2 are generated to first order by the effect of 
the -e (V x B,) force. Applying equations (1) and ( 2 )  to (5) and appropriately separat- 
ing the various perturbative terms, we obtain the following system of equations: 

E = E,+ E ,  + E? B =  B , , + B , + B , + B ,  J = J , + J , + J 2  ( 5 )  

V X E , = O  V * E, = -G, j = O ,  1 , 2  (6) 
V x B, = pJ,  V * B , = O  (7)  
G(, = 0 (8) 
Jll = uE,, (9) 

GI = V  * (U x Bo) G? = v - ( U  x B o )  
J ,  = a( E ,  + U x BIJ) JZ = a( E? + U x B, 1. 
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For j = 0 we obtain the zero-order system of equations while for j = 1 , 2  we have the 
corresponding first-order equations. 

However, the total field B, is not calculated from the corresponding equations but 
from the Biot-Savart integral 

Here the current of the central axis at the point ro( I ,  0, - b )  generates a magnetic field 
which is applied at the point r =  (x, y, z )  of the ball. The length Io  is the distance 
between the centres of the two bearings and d l  = (-d/, 0,O). 

The required fields and  currents are determined as follows. We define E, = -V+, 
and solve the corresponding Laplace or Poisson equations of the form 

‘7‘4, = G,. (11) 

T2B,  = -pV x J , .  

From (9) we obtain the corresponding current densities J, and finally we determine 
the induced magnetic fields B, by solving, instead of (7), the single equations 

(12) 
All the differential equations will be solved using the spherical coordinates r, cp 

and 6. 
Starting from the zero-order equations with J = 0 we observe that the solution of 

(1 11, Go, will be independent of cp, with odd symmetry about 0 = .rr/2 and bounded 
in the region 0 S r S R, because of the cylindrical symmetry about the z axis. Hence 
& is obtained from the general solution of the Laplace equation 

with m’ = 0 and n ‘  = 2n + 1. The constants A2,,+, are determined from the boundary 
condition that the radial component of the current density vector JOr = - u ( d + , / d r )  
must vanish over the surface of the ball, except at the two spherical caps, where the 
current enters ( 0  = 0) and leaves ( e  = n-). This is written as 

I = 7 2 ~ R ’ a  1 (9) sin e d e  
cap I =  R 

where the signs - and + indicate the upper and lower cap, respectively. Hence we 
obtain the solution 

where 

c o t ( a / 2 ) P ~ , + , ( c o s  e )  
lim & ( a )  = 1 

2(2n + l ) ( n  + 1) a - 0  
& ( a )  = 

From the first equation in (9) we obtain the components of the current density JO 
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Substituting these components into ( 7 )  and considering that the lines of Bo are 
concentric circles around the z axis, we obtain the only two non-vanishing components 

Integrating (20) we obtain 

This expression has been shown by Gruenberg to be reduced to the well known 
formula 

The solution of equations (6) for the first-order equations j = 1 is reduced to the 
solution of (1 1) with GI = V - ( U  x Bo) and U x Bo = -r^flrBo sin Q. Hence the electric 
field E ,  is determined from the potential 4, which satisfies the Poisson equation 

The solution at the surface of the sphere is subjected to the boundary condition 
i, Vqj, = ( D x Bo) e*, at r = R, which takes the form 

a*, -+flrB,, sin Q = 0 
dr at r = R. (24) 

The potential 4 ,  is the sum of the solution of the homogeneous equation q j lh  
multiplied by & ( a )  and  of the particular solution qj , , .  The function is of the form 
(13) with m ' =  1, n ' = 2 n + l  while the function $,, is obtained following the method 
of appendix 1. After the application of the condition (24), one obtains 

~ I R R s i n p  ( 4 n + 3 )  c 
* I =  477 , , = o ( 2 n + 1 ) ( 4 n + 5 )  

Applying (9) and (12), we obtain the corresponding current J ,  and the magnetic 
field B , :  

4n + 3  i p I R a  sin Q 

47r . = , ( 4 n + 5 ) ( 2 n + l )  J , ,  = 

p I R u c o s c p  4n + 3  
Jim= 4 ~ s i n  e . = , ( 4 n + 5 ) ( 2 n + l )  c 
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B, ,  = 0 (29) 

(4n + 3)  
BIfJ = p2znaR  8 7  . = , ( 4 n + 5 ) ( 2 n + l ) ( n + l )  2 sin 8 

2 n + l  

x (i) B n ( a ) P ~ n + l ( c o s  e)  

(4n + 3 )  f - + ' I R ~ R  sin cp 

857 . = o ( 4 n + 5 ) ( 2 n + l ) ( n + 1 )  Bl, = 

The solution of (6) f o r j  = 2 is reduced to the solution of (11)  with G2 = V ( U  x B a ) .  
The integration of (10) leads, in a spherical coordinate system, to the formula 

- ( b + z )  cos 8 sin cp - y  sin 8, - ( b + z )  cos cp) (32)  

where x, y ,  z are the rectangular coordinates and D = y'+ ( b  + 2)' .  The vector b = 
( 0 ,  0, - b )  denotes the distance of the centre of the ball from the centre of the rotating 
axis and the vector A = (l , , ,  0, - b )  has cp = 0 and  F =cos  OA = - b / A .  In  rectangular 
coordinates we have 

ipZN,Rb xy y ( x - I , )  
457D ( m - m  (33)  

The electric field E2 can now be determined from a potential $,which satisfies Poisson's 
equation 

The solution $, is subjected to the boundary condition that the radial component 
of Jz must vanish over the surface of the ball, so that 

V$, e, d S  = (U x B,)e, dS. (35)  5 5 
Let us write $?=  $ I , b + $ 2 . A  where $ 2 , h  and are the particular solutions of the 
differential equations obtained from the separation of (34) ,  keeping only the first or 
the second term of the right-hand side of (34) ,  respectively. The series representations 
of the terms of (34) in terms of the single Legendre polynomials lead to 

where q = n - 2k - 1 and y is the angle between r and A.  Using the relation 

P,(cos y ) =   cos e ) ~ , ( & ) + z  (q-m)! ~ y ( e ) ~ ; ( c o s  e )  cos m ( c p , - q 4 )  (38)  (1  + m ) !  



The ball bearing motor and related Maxwell equations 3189 

with cpA = 0 and E = COS e A ,  we ask for a solution of the form 

Hence (37 )  is reduced to the solution of the equations 
v'+:~A = rnPq(cos e )  sin e sin (p (40 )  

Solving the above equations by applying the methods developed in appendix 1 
with g l ( n )  = 1, m = 1 and appendix 2, we determine the potential (L2, which is given by 

2 ( 2 )  - n C - r PY(cos 0 )  sin 6 cos mcp sin cp. 

(41 )  x [ Q W + I  ( e ) ( ~ ~ + i @ ~ ) +  Q G - I ~ @ , I )  J 
where QY;: = c,PyTl - c,P;-, . The coefficients c, are defined in appendix 2, Q0 = 
cos mcp sin (p and 

The potential (L? satisfies the boundary condition (35 ) .  The addition of a solution 
to the homogeneous equation of the form (13 ) ,  subjected to the condition (35 ) ,  would 
lead to zero constants. 

= sin( m - 1)cp. 

Using E 2 =  -V(L, and ( 9 ) ,  one finally obtains the current density J2 

(43 )  

where @ ? = @ ( , + @ ' / 2 ,  @ . , = - ( m + l ) ( s i n  mcp sincp-$cos(m-l)cp) and Q4= 

( m  - 1)  cos(m - 1)cp. 
Substituting the leading terms of J2  into (12), we determine the corresponding 

terms of the induced magnetic field B,.  However, the estimated leading terms indicate 
that the contribution of this field to the torque is negligible. 



3190 P Hatzikonstantinou and P G Moyssides 

3. Torque, power and ohmic power loss 

The total torque applied on  the sphere is given by the volume integral 

( J x B ) x r . i d ' r .  (45) 

The force J x B is the result up  to first order of the current density J = Jo+ J ,  + J2  
and of the field B = Bo+ B,  + B,.  The terms J,  x B,,  ( i  = 0, 1) d o  not contribute to the 
torque because of the Newton's third law. After some algebra, the terms Fo= 
J,, x B ,  + J ,  x Bo and Jo  x B, are also integrated to zero. Our result for the force Fo 
contradicts Gruenberg's result due to his algebraic errors with respect to the coefficients 
of J , ,  B ,  and the integration. 

Weenink agrees with our result, but he has not applied the boundary condition 
(14) correctly so that the term & ( a )  does not appear in his expression for the currents 
and  fields. However, & ( a )  is given by the relation (16) and  is of vital importance for 
the convergence of the series expressions for the torque, the total power and the ohmic 
power loss, which will be evaluated below. Of course Gruenberg and Weenink had 
not taken into account the forces acting on the ball which were generated by the 
induced currents and fields caused by the current of the central axis. 

The integration of (45) is achieved when the field B, and the current density J. ,  
given by the equations (32) and  (42)-(44), respectively, are written in the form of 
series, via the relations 

where E,(n)=II::d(-n+i). 

vanishing terms which contribute to the torque of the ball: 
After tedious calculations we have found the following formulae for the non- 

p2 1'0 N ,  a ~ 3  (4n '+3)Bn  ( a )  
T,  = ( J 2  x Bo) x r -  i dr3  = I 4.n n , n  = o  ( 2 n ' +  l ) ( n ' +  1) 

( - l ) " " ( n + 2 ) ( n + l ) n  R " c 5  '{ 2 ( 2 n + 3 ) ( 2 n + l )  (b) b 
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p 12R NI a R  4n'+ 3 
T2 = ( J 1  x B,) x r -  i dr3 = f ( - ' - I  E A  ( 2  '1 (4n'+5) Bn ' ( a  I 8.rr n , n ' , A  = O  

( n - m ) !  P ~ ( E )  
~ ( ~ ) ~ " - . ' ( G ~ ~ ( 0 , 2 , 0 , 0 ;  n ,n ' ,  v , A ) - 2  2 ~- , , , = l ( n + m ) !  A 

x ( M ( m , 2 ,  m,O; n, n ' ,  v , A ) - l , M ( m ,  1, m, m ;  n, n ' ,  v , A ) )  (48 )  

where 

q = 2 n - k + l  c5=(2n '+n+5) - '  c6 = ( 2  n' + n + 2 v + A + 4) - ' ,  

( - 1 Y  P H ( E )  

An+1 b n t l  c, = (2n '+  n + 2v+ A + 3 ) - '  and G, = 

WO( v, m ;  i, j ;  n, n ' ,  A )  

= C ( 2 v ,  m, i ) [ S 2 ( n ,  j ;  2n'+ 1 ,  1 ;  A + 1 ,2v+ i -  1) 

- S l ( n , m ; 2 n ' + 1 ,  1 ; A , 2 v + i - 3 ) ]  

W , ( m , i ;  n ,n ' ,  v , A ) = C ( 2 v , m , i ) S l ( n , m ; 2 n ' + 1 , 1 ; A , 2 v + i - 1 )  

W3(n ' ,  q, m )  = ~ , , ~ ( 2 n ' +  1 ,  I ;  q, m + 1)(27rC(2, m, O)+t.rrs(m - 2 ) )  

+ ~ , , , ( 2 n ' +  1 , 1 ;  q, m - 1)$.rrs(m - 2 )  

Z,,,( n', m';  q, m )  = PZ Q:; d cos 0 I:l 
= c ,S , (n ' ,  m ' ;  q +  1 ,  m ;  0,O) - c,S,(n',  m';  q - 1 ,  m ;  0,O) 

WO( v, k ;  i, e ;  n, n ' ,  A )  M , ( j ,  i, k, e ;  n, n ' ,  v, A )  = L , ( d ,  i )  W,( j ,  i ;  n, n',  v, A)+- 
2n'+ 1 
L A 4  i )  

where d = 2n'+2v+ n + A. The calculated integrals 

sin"cp cos mcp cos"cp dcp 

S , ( n ,  m ;  n' ,  m ' ;  p ,  q )  = sinqe cospePr,'P:: d cos e ( 5 1 )  

dP7 '  
sinye coSpe--- P:: d COS e 

d COS e S J n ,  m ;  n ' ,  m ' ;  p ,  q )  = 

are given by (A3.1), (A3.4)  and (A3.5) in appendix 3.  Since the force J 2 x B ,  is very 
weak, we have considered only the leading contributions to the torque, neglecting 
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terms of order A-" with n 2 1. This term of the torque is given by 

T3= ( J 2 x B , ) x r . i d r i  I 
L = l  

x [(SI( n, 0; n ' ,  1; A + 2 ,  2~ - 1)  - SI( n, 0; n ' ,  1; A, 2~ - 1))(  n '+ 2) 

- S2( n, 0; n ' ,  1 ; A + 1, 2 v + 1) + SI(  n, 0; n',  1 ; A, 2~ - 1 ) ]  (53) 

The contribution of the force J 2 x  B ,  in the torque is not presented, because the 

The torque T = TI + T2 + T3 is positive and  tends to increase the speed until equili- 

The total power P and the ohmic power loss PL are given by the relations 

where c8 = ( 2 ~  + A + n + n '+  4)- ' .  

leading terms are of the order 

brium is established with frictional and windage torques. 

(54) 

where N = NI N,; NI is the number of balls per bearing and  N 2  is the number of 
bearings. Taking into account the dependence of J,  ( i  = 0, 1 ,2)  on the angle p, omitting 
terms of the order A-" with n 2 1 and neglecting the terms J :  and J :  which are of the 
order ( u / c ) ' ,  we obtain the relation 

The series in (55) as well as the series respesentations of the torque in (47), (48) 
clearly diverge in the limit a + 0 since B,(O) = 1. To make the results useful, we adopt 
Gruenberg's analysis, where for very small but finite angles a, the formula (16) for 
& ( a )  is approximated by 

where J ,  is the Bessel function of order one. For fixed a, J ,  tends to zero rapidly after 
4 n + 3  surpasses 2 / a  and the series in (47), (48) and (55) converge. Substituting (56) 
into (55) and  evaluating the resulting sum numerically we arrive at the approximated 
formula 

0.541 NI' 
R wa 

PL = (57) 

4. Motor characteristics and comparison with experiment 

In order to compare our theoretical results with the corresponding experimental ones, 
it is necessary to express the required quantities in terms which are used for the 
description of the motor characteristics. So the system of bearings is subjected to 
voltage V and total current i = I N ,  while the angular velocity of the shaft is given by 



The ball bearing motor and  related Maxwell equations 3 193 

In terms of these variables the total power developed by the motor P, the torque 
and  the ohmic loss are 

T = kk,,wi' PL = Re 1' (59) p = k  2 '  W I  

where Re is the resistance and  k is a constant depending on the motor characteristics. 
The torque is written T = X : _ ,  T , = p ' l ' n a R ' t N  where t = X : = l  t , .  The terms t ,  

incorporate the corresponding series of the terms T, .  Calculating t ,  from (47), (48) 
and ( 5 3 ) ,  we have neglected terms of order (Rib')" with n >  1 and  A-",  with n 3 1, 
having estimated values smaller than lo-'. The latter case was expected by the fact 
that the field B, is mainly generated by the current of the central axis in the vicinity 
of the ball. Hence terms of the order A-" in the vectors B,, J2 and the generated 
forces are of minor significance. Under the above assumptions and calculating all the 
terms of order R / b ' ,  we obtained the values t ,  = 0.151 37 N I ,  t2 = 0.005 66 N I ,  t? = 
3 . 8 5 7 ~  10-'N: with total t = 1.1011. 

This means that the main contribution to the torque is caused by the force J2 x Bo 
and is followed by the contributions due to the forces J ,  x B, and J2 x B,,  as was 
expected. The comparison of (59) with our aforementioned formulae leads to the 
relations 

t (  b - R) 'Rp 'rN2 0.541 
NI RuNa 

k =  Re=-. 

The overall power balance leads to the equation Vi  = P + P,  from which we obtain 
V = Em + Re x i, where Em = kw'i is the back EMF.  Defining 

0.42426 I '  

( b  - R ) R p u ( a t ) '  ' 
we obtain for the torque, via equation (59),  the relation 

3k0 V 2 ( w / w , )  -- kk,w V' 
T =  

( R e +  kw') ' -w, ,  Re [ 3 + ( w / w o ) ' ] ' '  

(61) 

The torque which does not depend on the number of bearings becomes zero for 
w = 0 and takes its maximum value for o = U,,. The efficiency of the motor is defined 
by 

P E - _ _ _  
P +  P L - 3 + ( w / w o ) "  f -  

For small bearings ( w / w , , ) ~ < <  1 we have P<< PL and V =  Re x i. 
In the case of large bearings wg may be small enough that stable operation at speeds 

in excess of w,, is feasible. However, for small bearings wo is large and  friction and  
windage losses will lead to angular velocities w below w,. Considering that the torque 
and the total power increase with the size of the bearing while the ohmic power loss 
decreases, we conclude that the efficiency El tends to increase with the size of the 
bearing. 

The validity of our theory for the explanation of the ball bearing motor will be 
tested by comparing our theoretical predictions with the corresponding results obtained 
by us (Moyssides and  Hatzikonstantinou 1989) during an experiment for the study of 
the motor characteristics. In this experiment two bearings with inner diameter 9 mm 
were used ( N 2  = 2 )  in series. Each bearing had NI = 7 completely spherical balls with 
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radius R = 2 mm while the distance of the balls' centre from the centre of the bearing 
was b = 11 mm. Using bearings made of chromium steels and currents varying from 
i,,, = 43.5 A to i,,, = 70.146 A, we measured resistance Re(min i) = 0.0618 ohm to 
Re(max i )  = 0.0383 ohm, respectively. From extended measurements we estimated a 
contact angle a = 7 x rad. The small size of a enables the flux density to reach 
saturation levels near the contact points. Considering that for the values of our currents 
the relative permeability is about pr = p / p o  = 600 with p(] = 4rr x lo-', we estimate 
from ( 2 2 ) ,  with 6 = ~ / 2 ,  a magnetic field of the order 0.62-1 T. The magnetic field 
generated by the central axis (32) is of the order 0.3 T in the centre of the ball. It is 
known that there is no starting torque unless there is some residual magnetism left in 
the balls from a previous run. In our experiment using i,,, = 43.5 A and i,,, = 70.146 A 
we have measured angular velocities U,,, = 93.18 rad 5Y' and wmdx = 245.48 rad s-I, 
respectively. 

The theoretical predictions were estimated using the above parametric values for 
N , ,  N,, R, b, p and a and the calculated t = 1.1011. The constants k and U were 
calculated from (60) using the experimentally measured resistance Re = 0.05. 

In table 1 we present the theoretical predictions via (60)-(633 and the experimental 
results for comparison. In both cases the indices min and max of the values i,,, = 43.5 A 
and i,,, = 70.146 A. It can be easily seen that the theoretical predictions are in excellent 
agreement with the corresponding experimental results. 

Table 1.  Theoretical and  experimental values of the ball bearing motor  characteristics 

Theoretical Experimental 

(+ = 5.5204 x IO6 ohm m- '  ( f rom Re(min i )=0.0618*0013 ohm 
(60) with 
Reelp = 0.05, from Moyssides et a /  1989) Re(max I) = 0.03831 *0.0008 ohm 

k = 0.79972 x IO-'  k = (0.80398 = 0.304) x IO-' Ws' rad-' A-' 
T,,, = 0.313 x IO- '  T,,,=(0.315xO.l2)x Wsrad- '  
I",,, = 2.146 x T,,, = ( 2 . 1 5 8 ~ 0 . 8 2 )  x IO-' Ws rad- '  
P,,, = 1.313 w P,,, = 1.321 *0.499 W 
P,,, = 23.712 W P,,, = 23.839 * 9.054 W 

PLW, , \= 188.531 W P L,,, = 188.53 z 4.02 W 
E(,-  = 0.01 1 1  ErnF=O.O1l =0.004 

w g /  min I 1 = 506.1 rad s- '  
w g ( m a x  I 1  = 398.6 rad s- '  

P L m , r  = 116.915 W P L ~ , ~  = 116.92 * 2.45 W 

E,,d~=0.1117 E ~ m d ~ = 0 . 1 1 5 * 0 . 0 4 5  

5. Discussion and conclusions 

In this work we have proved that the ball bearing motor cannot be explained by 
considering only the interactions of the generated currents and associated magnetic 
fields inside the spherical balls and neglecting the current of the central axis and its 
associated effects. This is due to the fact that, up to second order, these electromagnetic 
fields have a structure which yields a zero torque. This result has also been confirmed 
by Weenink (1981). However, we estimated that higher-order terms ( n 2 2 )  of the 
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electromagnetic fields are of the order ( c / c ) " ,  leading to negligible internal excited 
forces and  torque. 

For the explanation of this motor behaviour we have developed the aforementioned 
theory, where for the first time we have taken into account the interactions of the 
magnetic field generated by the uniform current of the central axis and  its associated 
induced current J2  with the above electromagnetic fields. From our perturbative 
description, neglecting higher-order relativistic terms, we have found that the main 
contribution to the torque is caused by the forces J2 x Bo, J ,  x B, and J2 x B,.  

Calculating the torque, we have neglected from the corresponding series terms of 
order ( R /  b)"  with n > 1 and A-" = (b '+  li)-fl ' with n 3 1. Hence the number of 
perturbative terms required for a given accuracy depends on the relative dimensions 
of the motor. In practice there are not large limits for variation of the parameter R /  b2 .  
However, as the distance lo between the two bearings decreases, the contribution of 
the higher-order terms A-" to the torque increases. 

The excellent agreement between the theoretical and  experimental results confirms 
this theory. 

Appendix 1 

We wish to solve differential equations of the form 

c'+ = g l ( n ) r " P T ( c o s  6 )  sin&@ ( A l . l )  

where g , ( b )  depends only on n. 
The solution of ( A l . l )  in spherical coordinates takes the form 

+ = c g l ( n ) r " + 2 ~ T ( c o s  0 )  sin&cp (A1.2) 

where c is a constant. Substituting (A1.2) into (Al . l ) ,  we obtain the equation 

(A1.3) 

and  g 2 ( n ) = ( n + 2 ) ( n r 3 ) .  Solving (A1.3) we find c = g , ( n ) / ( g 2 ( n ) - n ( n + l ) ) ,  which 
determines the solution (A1.2). 

Appendix 2 

We wish to solve differential equations of the form 

C'4 = r"PT(cos 0 )  cos p sin cp sin 0. (A2.1) 

We consider a solution of the form + =  r""(O,(O)@.,+e,(6)0,)  where 0,= 
cos mcp sin cp and 0 ,  = sin( m - l )@.  Then from (A2.1) we arrive at  the coupled differen- 
tial equations 

(A2.2) 

(A2.3) 

where gz( n )  = ( n  + 2)( n + 3). 
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From (A2.2), applying the method of appendix 1, we obtain 

(A2.4) 

where c I  = ( g2( n )  - ( q  + 1)( q + 2))-‘  and c2 = ( g2( n ) - q (  q - 1 ) ) - I .  

+On( 8 )  + e,( e ) ,  equation (A2.3) takes the form 
Putting e,(  0 )  = 

or 

1 
2 

= -- P;” sin e @ , .  

Substituting into (A2.6) the expression 

(A2.6) 

(A2.7) 

and  again applying the method of appendix 1, we obtain 

1 e,( e )  = 

c: = c , ( q - m +  l ) ( q - m + 2 )  

( c , f  y7-,l - c,P:;’ , I )  
2 ( 2 q + 1 )  

(A2.8) 
cd = c2( q + m ) (  4 + m - 1 ). 

Hence the solution of (A2.1) takes the form 

CL = r ’ ” ” O , , ( @ , , + ~ @ , ) +  e,@,].  (A2.9) 

Appendix 3 

( a )  The determination of torque is achieved by integrating over the angles cp and 0. 
The integrals over cp are calculated as follows: 

, r2ir 

C(v, m, U ) = - ! -  J sin’ cp cos mcp cos”cp d q  
277 0 

= 21 ( m )  9 
sin“ cp cos’ q dcp 

r = O  25 2~ 

( - l ) \ ( a  - l j ! ! ( P  - l ) ! !  = 
\ = n  21 (“) 25 ( a  + P ) ( ( Y  + p  - 2 )  . . . ( p  +2)2” / ’ (P /2) !  (A3.1) 

where E ( x )  means integer value ofx, cy = v i 2 5  and p = m+a+25.  The result (A3.1) 
is correct only when v and  m + CT are even numbers, otherwise C (  v, m, a )  = 0 
(b )  The integrals over 0 have the forms 

S , ( n ,  m ;  n’, m’; p ,  q )  = sin” 8 cos“0P::’ P::‘ d cos $ (A3.2) 

(A3.3) 
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Now we substitute the Legendre polynomials and  their derivatives with their 
corresponding series representations in terms of hypergeometric functions. Hence, the 
equations (A3.2) and  (A3.3) take the form 

S , ( n ,  m ;  n’, “; p ,  q ) =  Do c Dl(U, U ‘ ) I ( P ,  q/2 ,  q / 2 + g + 4  (A3.4) 
1 

(,,U = o  

1 

SAn,  m ;  n ’ ,  m’; p ,  q )  = -aQ, 1 D,(u ,  g ’ ) I ( p ,  q/2 ,  q / 2 + ~ + a ‘ -  1 )  (A3.5) 

where 

i,,<, = (1 

( m - n ) , , ( m + n + l ) , , ( m ’ - n ’ ) , , ( m ’ + n ’ + l ) , ,  
D,(U, U ’ )  = 

2‘’+‘’v !a’ ! (  m + I)<, ( m  + 
(A3.6) 

with ( a ) , , = a ( a + l ) ( a + 2 )  . . . ( a + ( ~ -  1 )  and ( ( ~ ) ~ ) = 1 .  T ( n )  represents the gamma 
function while the integral I with x =cos  6 is given by 

I ( p , q / 2 , 9 / 2 + a + a ’ ) =  x p ( 1 S x ) q  2 (1 -x )q  ? + r r + ‘ r  d x  = B ( q / 2 +  U +  U ’ +  1, p +  1) 1.’ I 

x F ( - q / 2 ,  p + 1; q / 2 +  (T + a ’ + p  + 2 ;  -1) + (-1)PB(q/2 + 1, p + 1 )  

x F ( - q / 2 - a - v ’ , p + l ;  q / 2 + p + 2 ;  -1) (A3.7) 

where F ( a ,  p ;  c ;  x )  and  B ( m ,  n )  = r ( m ) T ( n ) / T ( m + n )  are the hypergeometric and  
beta functions, respectively. 
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